Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric

نویسندگان

  • Lijuan Zhen
  • Weihua Guan
  • Liwei Shang
  • Ming Liu
  • Ge Liu
چکیده

An all-organic memory device based on a copper phthalocyanine (CuPc) thin-film transistor (TFT) using gold nanocrystals embedded in a polyimide gate dielectric is demonstrated. Both the gate dielectric and the active semiconductor layer are organic materials. Discrete gold nanocrystals are adopted as the charge storage medium. Under proper gate bias, gold nanocrystals are charged and discharged, resulting in the modulation of the channel conductance. Current–voltage (I–V ) measurements at room temperature show the memory behaviour of the fabricated devices. The detailed programming and erasing operations are discussed. Low fabrication temperature and low cost are two benefits of the fabricated memory devices, which could provide a low-cost solution for the all organic circuits. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the Characteristics of Organic Thin Film Transistors with Plasma-Polymer Gate Dielectrics

The effects of gate dielectrics material in organic thin film transistors (OTFTs) were investigated. The gate dielectrics were deposited by plasma enhanced chemical vapor deposition (PECVD) with cyclohexane and tetraethylorthosilane (TEOS) respectively used as organic and inorganic precursors. The gate dielectrics (gate insulators) were deposited as either organic plasma-polymer or organic–inor...

متن کامل

Low-Temperature Solution-Processed Gate Dielectrics for High-Performance Organic Thin Film Transistors

A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT) was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost co...

متن کامل

Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator

Polyvinylpyrrolidone  /  Nickel  oxide  (PVP/NiO)  dielectrics  were fabricated  with  sol-gel  method  using  0.2  g  of  PVP  at  different working  temperatures  of  80,  150  and  200  ºC.  Structural  properties and surface morphology of the hybrid films were investigated by X- Ray  diffraction  (XRD)  and  Scanning  Electron Microscope  (SEM) respectively. Energy dispersive X-ray spec...

متن کامل

Novel chemical route to prepare a new polymer blend gate dielectric for flexible low-voltage organic thin-film transistor.

An organic-organic blend thin film has been synthesized through the solution deposition of a triblock copolymer (Pluronic P123, EO20-PO70-EO20) and polystyrene (PS), which is called P123-PS for the blend film whose precursor solution was obtained with organic additives. In addition to having excellent insulating properties, these materials have satisfied other stringent requirements for an opti...

متن کامل

Inkjet-Printed Silver Gate Electrode and Organic Dielectric Materials for Bottom-Gate Pentacene Thin-Film Transistors

An inkjet-printed silver electrode and a spin-coated cross-linked poly(4-vinylphenol)(PVP) dielectric layer were used as a gate electrode and a gate insulator for a bottom-gate pentacene thinlm transistor (TFT), respectively. The printing and the curing conditions of the printed silver electrode were optimized and tested on various substrates, such as glass, silicon, silicon dioxide, polyethers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008